Interaction Analysis of Space Frame-shear Wall-soil System to Investigate Foundation Forces under Seismic Loading
نویسندگان
چکیده
The significance of incorporating soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the forces in the footings due to differential settlement of soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect significantly alters the axial forces and moments in the footings due to the differential settlement. The non-interaction analysis of space-frame-shear wall suggests that the presence of shear wall significantly reduces bending moments in most of the column footings but the interaction effect causes restoration of the bending moments to a great extent.
منابع مشابه
Composite piled raft foundation with intermediate cushion in layered soil under seismic forces
In order to mobilize shallow soil to participate in the interaction of piled raft foundation sufficiently, the concept of piled raft has been modified to new type of foundation named composite piled raft. In the system of composite piled raft, the short piles made of flexible materials is used to strengthen the shallow soft soil, while the long piles made of relatively rigid materials is used t...
متن کاملA comparative study on pile group and piled raft foundations (PRF) behavior under seismic loading
Study on the seismic behavior of piled rafts and pile groups while the same amount of construction material and excavation is used in their construction, are the main objective of this research. The process where the raft interaction with soil can affect the seismic response and stress distribution is also discussed in the current study. By means, ABAQUS software was applied for the finite elem...
متن کاملPERFORMANCE BASED OPTIMAL SEISMIC DESIGN OF RC SHEAR WALLS INCORPORATING SOIL–STRUCTURE INTERACTION USING CSS ALGORITHM
In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and per...
متن کاملEvaluation of the Effect of Connection between RC Shear Wall and Steel Moment Frame on Seismic Performance and Reduction Factor in Dual Systems
Dual systems of steel moment frame and reinforced concrete shear wall have combined the advantages of steel frames and reinforced concrete shear wall. These walls have increased the lateral stiffness of steel frames and have reduced seismic demands on steel frames thus providing opportunities to use such system. In this research intermediate dual system of steel moment frame was chosen with int...
متن کاملPerformance-Based Plastic Design of Moment Frame-Steel Plate Shear Wall as a Dual System
Steel Plate Shear Wall (SPSW) is an emerging seismic load-resistant system that, compared to other systems, enjoys the advantages of stable ductile behavior, fewer detailing requirements, rapid constructability, and economy. American seismic provisions decree that a SPSW should be designed as a moment frame with a web infill plate. Specifically, in case of buildings taller than 160 ft, it decre...
متن کامل